Skip to main content

Aptitude Day 39


Problems on Numbers

1. A number is doubled and 5 is added. If the resultant is tripled, it becomes 33. What's the number?

Solution:
                 Let the number be x.
                 3(2x+5) = 33
                    6x+15 = 33
                           6x=18
                             x=3.
                 The number is 3.

2. When 18 is subtracted from a number, it reduces to its three-fifth. What's the sum of the digits of that number?

Solution:
               Let the number be x.
               x-18=3/5(x)
               x-3/5(x) = 18
               5x-3x = 90
                     2x = 90
                       x = 45.
              The sum of the digits of the number is 4+5 = 9. 
                 
Problem to solve

Three-fifth of a number is 25 more than the half of the number. What's the number?


Comments

Popular posts from this blog

Aptitude Day 5

Answers of Day 4 :   1. 9                                   2. 5                                   3. 9                                   4. 8 To find the unit digit in the product. This is similar to the last model where we will find the unit digit of the sum. Example: 432*459*28*48=? Solution:  2*9=18 , 8*8=64, 4*8= 32. The unit digit of the total product is 2.  Problems to solve Find the unit digit of the product in the following 1. 404*397*810*21 =? 2. 24*42*36*78 =? 3. 81*82*89 =? 4. 72*36*98*47 =? See you tomorrow friends... Check out the answers over here  Aptitude Day 6

Aptitude Day 59

Answers of Day 58:     1. 1/90.     2. 20 Problems to solve: 1. The product of two numbers is 33 and the sum of their squares is 130. Find their difference. 2. The sum of two numbers is 100 and their difference is 20. Find their product.

Vocabulary Day 55

Dilemma Thesaurus: Noun : problem            double bind, difficulty, crisis, embarrassment, mess, puzzle...  Antonyms :  solution...  Example sentences:                  That's a serious dilemma we should think about that.          He'll never share his dilemma with anyone.