Skip to main content

Aptitude Day 55


Problems On Numbers

1. The difference between the squares of two numbers is 28000 and the sum of their numbers is 400. Find the numbers.

Solution:
                Let the 2 numbers be x and y.
                (x2-y2) / (x+y) = 28000/400
                (x+y)(x-y) / (x+y) =  70
                x-y = 70 ------ Equation 1
                x+y = 400 ---- Equation 2
                By solving equations 1 and 2 we get,
                x = 235 and y = 165.
                The numbers are 235 and 165.

2. The sum of three consecutive numbers is 315. The middle number is:

Solution:
                Let the numbers be x, x+1 and x+2.
                x+x+1+x+2 = 315
                3x+3 = 315
                    3x =  312
                      x = 104.
                The middle number is x+1 = 105.


                                        

Comments

Popular posts from this blog

Aptitude Day 5

Answers of Day 4 :   1. 9                                   2. 5                                   3. 9                                   4. 8 To find the unit digit in the product. This is similar to the last model where we will find the unit digit of the sum. Example: 432*459*28*48=? Solution:  2*9=18 , 8*8=64, 4*8= 32. The unit digit of the total product is 2.  Problems to solve Find the unit digit of the product in the following 1. 404*397*810*21 =? 2. 24*42*36*78 =? 3. 81*82*89 =? 4. 72*36*98*47 =? See you tomorrow friends... Check out the answers over here  Aptitude Day 6

Aptitude Day 59

Answers of Day 58:     1. 1/90.     2. 20 Problems to solve: 1. The product of two numbers is 33 and the sum of their squares is 130. Find their difference. 2. The sum of two numbers is 100 and their difference is 20. Find their product.

Vocabulary Day 55

Dilemma Thesaurus: Noun : problem            double bind, difficulty, crisis, embarrassment, mess, puzzle...  Antonyms :  solution...  Example sentences:                  That's a serious dilemma we should think about that.          He'll never share his dilemma with anyone.