Skip to main content

Aptitude Day 49


Problems on Numbers

1. The sum of two numbers is 16. Three times of the first number will be five times of the second number. Find their product.

Solution:
               Let the 2 numbers are x and y.
               x+y = 16    ------ Equation 1
               3x = 5y   
               x = 5y/3
               Substitude x value in equation 1. We get,
               5y/3 + y = 16
               5y+3y = 16*3
                   8y = 16*3
                       y = 6.
               Then, x = 10.
               Their product is 6*10 = 60.

2. The sum of two numbers is 33 and their difference is 3. Find their ratio.

Solution:
               Let the numbers be x and y.
               x+y = 33
               x-y = 3
               By solving these two equations we get,
               2x = 36
                x = 18.
                y = 15.
                Their ratio is 18:15 which is 6:5.

Comments

Popular posts from this blog

Aptitude Day 5

Answers of Day 4 :   1. 9                                   2. 5                                   3. 9                                   4. 8 To find the unit digit in the product. This is similar to the last model where we will find the unit digit of the sum. Example: 432*459*28*48=? Solution:  2*9=18 , 8*8=64, 4*8= 32. The unit digit of the total product is 2.  Problems to solve Find the unit digit of the product in the following 1. 404*397*810*21 =? 2. 24*42*36*78 =? 3. 81*82*89 =? 4. 72*36*98*47 =? See you tomorrow friends... Check out the answers over here  Aptitude Day 6

Aptitude Day 59

Answers of Day 58:     1. 1/90.     2. 20 Problems to solve: 1. The product of two numbers is 33 and the sum of their squares is 130. Find their difference. 2. The sum of two numbers is 100 and their difference is 20. Find their product.

Vocabulary Day 55

Dilemma Thesaurus: Noun : problem            double bind, difficulty, crisis, embarrassment, mess, puzzle...  Antonyms :  solution...  Example sentences:                  That's a serious dilemma we should think about that.          He'll never share his dilemma with anyone.